椭圆

定义

定义一

F1P+F2P=2aF1F2=2c |F_{1} P|+\left|F_{2} P\right|=2 a\\ \left|F_{1} F_{2}\right|=2 c\\
x2a2+y2b2=1(a>b>0) \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad(a>b>0)
PF1=a+exPF2=aex \begin{array}{l}{\left|P F_{1}\right|=a+e x} \\ {\left|P F_{2}\right|=a-e x}\end{array}\\

定义二

定义三

d=AA1F2Pd=e<1 d=|AA_1|\\ \frac{|F_2P|}{d}=e<1
通径CD=2b2a 通径 |CD|=2\frac{b^2}{a}
F2M=p=a2cc=b2c |F_2M|=p=\frac{a^2}{c}-c=\frac{b^2}{c}
AF2=ep1+ecosθ \left|A F_{2}\right|=\frac{e p}{1+e \cos \theta}\\
BF2=ep1ecosθ \left|B F_{2}\right|=\frac{e p}{1-e \cos \theta}\\
AB=2ep1e2cos2θ \left|AB\right|=\frac{2 e p}{1-e^2 \cos^2 \theta}\\
AF2BF2=1ecosθ1+ecosθ \frac{|AF_2|}{|BF_2|}=\frac{1-e\cos \theta}{1+e\cos \theta}

注意,通过控制 θ\theta 可以得出 ABmin=2b2a|AB|_{min}=2\frac{b^2}{a}

乱七八糟

三角换元

x2a2+y2b2=1(xa)2+(yb)2=1 \begin{aligned} \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} &= 1 \\ \left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} &= 1 \end{aligned}\\
{x=acosαy=bsinα {\left\{\begin{aligned} {x=a \cdot \cos \alpha} \\ {y=b \cdot \sin \alpha} \end{aligned}\right.}

点差法

{x12a2+y12b2=1x22a2+y22b2=1 \left\{\begin{aligned}{\frac{x_{1}^{2}}{a^{2}}+\frac{y_{1}^{2}}{b^{2}}=1} \\ {\frac{x_{2}^{2}}{a^{2}}+\frac{y_{2}^{2}}{b^{2}}=1}\end{aligned}\right.\\
x12x22a2=y12y02b2y1y2x1x2y1+y2x1+x2=b2a2y1y2x1x2y0x0=b2a2kABkOP=b2a2 \begin{aligned} \frac{x_{1}^{2}-x_{2}^{2}}{a^{2}}&=-\frac{y_{1}^{2}-y_{0}^{2}}{b^{2}} \\ \frac{y_{1}-y_{2}}{x_{1}-x_{2}} \cdot \frac{y_{1}+y_{2}}{x_{1}+x_{2}}&=-\frac{b^{2}}{a^{2}}\\ \frac{y_{1}-y_{2}}{x_{1}-x_{2}} \cdot \frac{y_0}{x_0}&=-\frac{b^{2}}{a^{2}}\\ k_{A B} \cdot k_{OP}&=-\frac{b^{2}}{a^{2}} \end{aligned}\\

切线

Ax2+By2+Cx+Dy+E=0Ax0x+By0y+Cx0+x2+Dy0+y2+E=0 \begin{gathered} A x^{2}+B y^{2}+C x+D y+E=0\\ A x_{0} x+B y_{0} y+C \frac{x_{0}+x}{2}+D \frac{y_{0}+y}{2}+E=0 \end{gathered}

整体思想

x1+kx2=0x1x2=kx2x1=1kx1x2+x2x1=x12+x22x1x2=(x1+x2)2x1x22(x1+x2)2x1x2=k1k+2 \begin{gathered} x_1 + kx_2 = 0\\ \frac{x_1}{x_2} = -k\\ \frac{x_2}{x_1} = -\frac{1}{k}\\ \frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{x_1^2 + x_2^2}{x_1x_2} = \frac{(x_1+x_2)^2}{x_1x_2}-2\\ \frac{(x_1+x_2)^2}{x_1x_2}=-k-\frac{1}{k}+2 \end{gathered}

焦点三角形

仿射变换