「SDOI 2010」地精部落

我们称一个排列是合法的,当且仅当每一个数都满足这个数比它相邻的数都要大或都要小。

求长度为 NN 的合法排列数量。


我好弱啊,又不会做

Sol 1

首先一个长度为 nn 的合法排列,可以分为两种,开头为山谷,开头为山峰

易知,这两种情况方案数相同

定义 fnf_n 为长度为 nn 时,第一个为山峰的方案数量(同样也是山谷的方案数量)。

考虑已知 f0fn1f_0 \sim f_{n-1} ,如何转移到 fnf_n

考虑枚举 nnjj 处当山峰,jj 为奇数

那么去掉 nn 后, 1n11\sim n-1 需要分成两堆,大小为 j1,njj-1, n-j,选的方案总数为 (j1n1){j-1 \choose n-1}。然后想像成离散化。

fn=fj1fnj(j1n1)[jmod2=1] f_n = \sum f_{j-1} f_{n-j} {j-1 \choose n-1}[j\bmod 2 = 1]
Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#include <algorithm>
#include <bitset>
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <deque>
#include <iostream>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <utility>
#include <vector>
// #pragma GCC optimize("Ofast")
// #pragma GCC optimize("inline")
// #pragma GCC optimize("-fgcse")
// #pragma GCC optimize("-fgcse-lm")
// #pragma GCC optimize("-fipa-sra")
// #pragma GCC optimize("-ftree-pre")
// #pragma GCC optimize("-ftree-vrp")
// #pragma GCC optimize("-fpeephole2")
// #pragma GCC optimize("-ffast-math")
// #pragma GCC optimize("-fsched-spec")
// #pragma GCC optimize("unroll-loops")
// #pragma GCC optimize("-falign-jumps")
// #pragma GCC optimize("-falign-loops")
// #pragma GCC optimize("-falign-labels")
// #pragma GCC optimize("-fdevirtualize")
// #pragma GCC optimize("-fcaller-saves")
// #pragma GCC optimize("-fcrossjumping")
// #pragma GCC optimize("-fthread-jumps")
// #pragma GCC optimize("-funroll-loops")
// #pragma GCC optimize("-fwhole-program")
// #pragma GCC optimize("-freorder-blocks")
// #pragma GCC optimize("-fschedule-insns")
// #pragma GCC optimize("inline-functions")
// #pragma GCC optimize("-ftree-tail-merge")
// #pragma GCC optimize("-fschedule-insns2")
// #pragma GCC optimize("-fstrict-aliasing")
// #pragma GCC optimize("-fstrict-overflow")
// #pragma GCC optimize("-falign-functions")
// #pragma GCC optimize("-fcse-skip-blocks")
// #pragma GCC optimize("-fcse-follow-jumps")
// #pragma GCC optimize("-fsched-interblock")
// #pragma GCC optimize("-fpartial-inlining")
// #pragma GCC optimize("no-stack-protector")
// #pragma GCC optimize("-freorder-functions")
// #pragma GCC optimize("-findirect-inlining")
// #pragma GCC optimize("-fhoist-adjacent-loads")
// #pragma GCC optimize("-frerun-cse-after-loop")
// #pragma GCC optimize("inline-small-functions")
// #pragma GCC optimize("-finline-small-functions")
// #pragma GCC optimize("-ftree-switch-conversion")
// #pragma GCC optimize("-foptimize-sibling-calls")
// #pragma GCC optimize("-fexpensive-optimizations")
// #pragma GCC optimize("-funsafe-loop-optimizations")
// #pragma GCC optimize("inline-functions-called-once")
// #pragma GCC optimize("-fdelete-null-pointer-checks")
#define rep(i, l, r) for (int i = (l); i <= (r); ++i)
#define per(i, l, r) for (int i = (l); i >= (r); --i)
using std::cerr;
using std::endl;
using std::make_pair;
using std::pair;
typedef pair<int, int> pii;
typedef long long ll;
typedef unsigned int ui;

// #define DEBUG 1 //调试开关
struct IO {
#define MAXSIZE (1 << 20)
#define isdigit(x) (x >= '0' && x <= '9')
char buf[MAXSIZE], *p1, *p2;
char pbuf[MAXSIZE], *pp;
#if DEBUG
#else
IO() : p1(buf), p2(buf), pp(pbuf) {}
~IO() { fwrite(pbuf, 1, pp - pbuf, stdout); }
#endif
inline char gc() {
#if DEBUG //调试,可显示字符
return getchar();
#endif
if (p1 == p2) p2 = (p1 = buf) + fread(buf, 1, MAXSIZE, stdin);
return p1 == p2 ? -1 : *p1++;
}
inline bool blank(char ch) { return ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t'; }
template <class T>
inline void read(T &x) {
register double tmp = 1;
register bool sign = 0;
x = 0;
register char ch = gc();
for (; !isdigit(ch); ch = gc())
if (ch == '-') sign = 1;
for (; isdigit(ch); ch = gc()) x = x * 10 + (ch - '0');
if (ch == '.')
for (ch = gc(); isdigit(ch); ch = gc()) tmp /= 10.0, x += tmp * (ch - '0');
if (sign) x = -x;
}
inline void read(char *s) {
register char ch = gc();
for (; blank(ch); ch = gc())
;
for (; !blank(ch); ch = gc()) *s++ = ch;
*s = 0;
}
inline void read(char &c) {
for (c = gc(); blank(c); c = gc())
;
}
inline void push(const char &c) {
#if DEBUG //调试,可显示字符
putchar(c);
#else
if (pp - pbuf == MAXSIZE) fwrite(pbuf, 1, MAXSIZE, stdout), pp = pbuf;
*pp++ = c;
#endif
}
template <class T>
inline void write(T x) {
if (x < 0) x = -x, push('-'); // 负数输出
static T sta[35];
T top = 0;
do {
sta[top++] = x % 10, x /= 10;
} while (x);
while (top) push(sta[--top] + '0');
}
inline void write(const char *s) {
while (*s != '\0') push(*(s++));
}
template <class T>
inline void write(T x, char lastChar) {
write(x), push(lastChar);
}
} io;

const int N = 5000;

ll f[N], c[2][N];

int main() {
#ifdef LOCAL
freopen("input", "r", stdin);
#endif
int n, p;
io.read(n), io.read(p);
c[0][0] = 1;
c[1][0] = c[1][1] = 1;
f[0] = 1, f[1] = 1;
rep(i, 2, n) {
int pre = (i & 1) ^ 1, cur = i & 1;
rep(j, 1, i)(c[cur][j] = c[pre][j - 1] + c[pre][j]) %= p;
c[cur][0] = 1;
for (int j = 1; j <= i; j += 2) (f[i] += f[j - 1] * f[i - j] % p * c[pre][j - 1]) %= p;
}
io.write(f[n] * 2 % p);
return 0;
}

Sol 2

待补

作者

Gesrua

发布于

2019-08-16

更新于

2020-11-21

许可协议