行列式

定义

SnS_n 表示 {1,2,,n}\{1,2,\cdots,n\} 上所有排列的集合

定义函数 N(σ)N(\sigma) 表示 σ\sigma 这个序列中逆序对的个数

定义函数 sgn(σ)=(1)N(σ)\mathrm{sgn}(\sigma) = (-1)^{N(\sigma)}

具体来说

S3={(123),(132),(213),(231),(312),(321)} \begin{aligned} S_3 = \{ &\left(\begin{array}{cccc} 1 & 2 &3 \end{array}\right), \\ &\left(\begin{array}{cccc} 1 & 3 &2 \end{array}\right), \\ &\left(\begin{array}{cccc} 2 & 1 &3 \end{array}\right), \\ &\left(\begin{array}{cccc} 2 & 3 & 1 \end{array}\right), \\ &\left(\begin{array}{cccc} 3 & 1 &2 \end{array}\right), \\ &\left(\begin{array}{cccc} 3 & 2 & 1 \end{array}\right)\} \end{aligned}

假如

σ=(312)S4 \sigma=\left(\begin{array}{cccc} 3 & 1 &2 \end{array}\right)\in S_4

sgn(σ)=2\mathrm{sgn}(\sigma)=2

一般的

a1,1a1,nan,1an,n=σSn(sgn(σ)i=1nai,σ(i)) \begin{vmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{vmatrix} = \sum_{\sigma\in S_n} (\mathrm{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)})

转置行列式

行列式

D=a1,1a1,nan,1an,n=(ai,j) D=\begin{vmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{vmatrix}=(a_{i,j})

定义其转置行列式

DT=a1,1an,1a1,nan,n=(bi,j)ai,j=bj,i D^T=\begin{vmatrix} a_{1,1} & \cdots & a_{n,1} \\ \vdots & \ddots & \vdots \\ a_{1,n} & \cdots & a_{n,n} \end{vmatrix}=(b_{i,j})\\ a_{i,j}=b_{j,i}

二阶行列式

a1,1a1,2a2,1a2,2=a1,1a2,2a1,2a2,1 \begin{vmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{vmatrix} = a_{1,1} a_{2,2} - a_{1,2}a_{2,1}

三阶行列式

a1,1a1,2a1,3a2,1a2,2a2,3a3,1a3,2a3,3=a1,1a2,2a3,3+a1,2a2,3a3,1+a1,3a2,1a3,2a1,3a2,2a3,1a1,1a2,3a3,2a1,2a2,1a3,3 \begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{vmatrix} = a_{1,1}a_{2,2}a_{3,3} + a_{1,2}a_{2,3}a_{3,1}+ a_{1,3}a_{2,1}a_{3,2} - a_{1,3}a_{2,2}a_{3,1} - a_{1,1}a_{2,3}a_{3,2} - a_{1,2}a_{2,1}a_{3,3}

性质

对于行列式 DD

  • D=DTD=D^T
  • 一行有公因子 kk ,可以提取 kk
kai,1kai,2kai,n=kai,1ai,2ai,n \begin{vmatrix} \vdots & \vdots & \vdots & \vdots \\ {\color{blue}k}a_{i,1} & {\color{blue}k}a_{i,2} & \dots & {\color{blue}k}a_{i,n} \\ \vdots & \vdots & \vdots & \vdots \\ \end{vmatrix}= {\color{blue}k}\begin{vmatrix} \vdots & \vdots & \vdots & \vdots \\ a_{i,1} & a_{i,2} & \dots & a_{i,n} \\ \vdots & \vdots & \vdots & \vdots \\ \end{vmatrix}
  • 有一行或一列都为 00 ,则 D=0D=0
000=00=0 \begin{vmatrix} \vdots & \vdots & \vdots & \vdots \\ {\color{blue}0} & {\color{blue}0} & \dots & {\color{blue}0} \\ \vdots & \vdots & \vdots & \vdots \\ \end{vmatrix} =\begin{vmatrix} {\color{blue}0} & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ {\color{blue}0} & \vdots & \vdots & \vdots \\ \end{vmatrix}=0
作者

Gesrua

发布于

2019-01-28

更新于

2020-09-26

许可协议